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Synopsis 

The effect of various parameters on the overall rate constant, number average chain length, and 
polydispersity index of isothermal, irreversible, step growth polymerization of ARB monomers, 
exhibiting segmental diffusional limitations and carried out in HCSTRs, are studied. A phe- 
nomenological model which has proved useful for chain polymerization is adapted for step growth 
polymerizations and simulations for several values of the different parameters are carried out. 
The number average chain length p, and the polydispersity index p are obtained as a function of 
the dimensionless time t*. It is found that, even though the behavior of p, and p vs. t* depends 
on the values of the parameters, the plot of pn vs. p is unique as expected from statistical 
considerations. An attempt has been made to investigate the multiplicity of steady states under 
conditions of infinitely rapid heat transfer from a jacket, using singularity and bifurcation theory. 
It is found from the analysis that there is no multiplicity of steady states for this system, which is 
confirmed by simulations using a wide range of parameter values. 

INTRODUCTION 

Step growth polymerization of ARB monomers occurs through several 
molecular steps. The schematic representation of the various steps can be 
written as-4 

Before chemical reaction between two polymer molecules Pi and Pj (having 
chain lengths i and j ,  respectively) actually occurs, the molecules must diffuse 
to within close proximity of each other in the reaction mixture. No reaction 
can occur as long as the functional groups A and B are buried inside the coiled 
molecules. Segmental diffusion brings these groups together, and a successful 
collision leads to chemical reaction between them. 

The diffusional steps are rapid at  low conversions since the viscosity of the 
reaction mass is low. Under these conditions, the overall reaction is controlled 
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by the kinetics alone, without any diffusional influences. Assuming Flory's 
equal reactivity hypothe~is,'-~ the reaction process can be written as 

k, Pi + Pi --+ PCij + w 

where W is the condensation byproduct. 
Segmental diffusional limitations are quite severe a t  high conversions. This 

effect in step growth polymerization is quite similar to the Tromsdorff or gel 
effect in chain polymerization. Some work has already been reported on the 
modeling of this effect5 in batch reactors, using 'a simple phenomenological 
model. The model of Chiu et a1.,6 which has been developed for chain 
polymerization systems, has been adapted for this purpose due to its simplic- 
ity, even though other models have been proposed7-" for the gel effect. It is 
quite well known that all the models for the gel effect are equally good as 
regards explanation of experimental data, and so the simplest one was used in 
the earlier s t ~ d y , ~  as well as in the present one. 

In this study, irreversible step growth polymerization of ARB type 
monomers exhibiting segmental diffusional resistances and carried out in 
isothermal, homogeneous, continuous-flow, stirred tank reactors (HCSTRs) is 
studied. Such a study is of importance because these reactors provide several 
advantages (e.g., continuous operation, excellent heat transfer characteristics, 
etc.) over other reactors. Moreover, several steady state polymerizations in 
HCSTRs have been found to be associated with interesting multiplicity 
features,20 and it was of interest to find out if similar features are exhibited in 
the present case too. The technique suggested by Balakotaiah and L ~ s s , ~ ~ - ~ ~  
based on singularity theory, has been used to study the multiplicity of steady 
states for the present case of ARB polymerizations in HCSTRs. 

FORMULATION 

In step growth polymerization, diffusion of two large macromolecules hav- 
ing functional groups a t  their ends towards each other takes place prior to 
chemical reaction. Due to this segmental diffusional limitation, k ,  in eq. (2) 
decreases with conversion (or time). This situation is very similar to the effect 
of segmental diffusional limitations on the termination rate constants of free 
radical polymerizations, and so a similar model is postulated for the present 
case. A detailed description of the model is given by Kumar et aL5 and only 
the final form of the expressions involving k ,  are presented here for the sake 
of brevity. k ,  can be written in terms of a reference value kp,o  as 

where Do is the overall (segmental) diffusivity of functional groups at  some 
reference state and [PI represents the concentration of functional groups 
(= Cz=,[Pn]). Other terms are defined in Ref. 5. The ratio ( D/Do) depends 
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upon the bulk polymer concentration [PI, and the temperature6,21: 

v, 
10g(D’Do) = b, (T)  + b2(T)V, (4) 

where v, is the free volume fraction and b,(T) and b,(T) are empirically 
determined functions of the temperature T. V,, in turn, is given ad2  

V, = 0.025 + ( a1 - a,)( T - Tg) ( 5 )  

where a1 and ag are the volume-expansion coefficients of the liquid and glassy 
polymers, and Tg is the glass transition temperature of the polymer 
(a function of the average chain length). A commonly used equation for 
Tg2, 27, 28 is 

with Tgm and K being empirical constants. 
Rearrangements of eqs. (5) and (6)  gives 

V, = 0.025 + [Tgm(ar - a,)] ( 7 )  

which are more convenient compared to eqs. (5) and (6).  
Equations (3)-(8) involve several parameters. Most of them, however, may 

be obtained through independent experiments on nonreacting systems. In the 
present study (as in the previous one on batch reactors5), these parameters are 
varied one a t  a time, keeping others a t  some reference values and numerical 
results generated to study their effects. The reference values chosen are 
typical of some common step growth polymerization  system^.^ 

( a )  Simulation. Mole balance equations for an HCSTR (see Fig. 1) can be 
written as 

where the subscript 0 refers to the input-stream bulk values, b refers to the 
bulk values in the exit stream, as well as in the reactor, and T is the mean 
residence time (= V / Q ) .  k p  is a function of the conditions in the reactor, and 
so of the residence time, and is the same for all species, Pi, as given by eq. (3). 
The above equation can be appropriately summed up to give equations for the 
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various moments of the chain length distribution defined as 
m 

hi = c ni[P,] b ,  i = 0,1,. . . 
n= 1 

to give 

' 0  = [ ' Ib  

TABLE I 
Dimensionless Equations for Simulating HCSTR Behavior 

where 
t* = 7kp."[P11b,0 

[PI* = [Plb/[P,lb.O 
A*, = ~,/[PlI,,O 
Functional group conversion, x = 1 ~ [PI* 



IRREVERSIBLE STEP GROWTH POLYMERIZATION 983 

These can be used to determine the polydispersity index p and the number 
average chain length p n  of the polymer, defined by 

P = @ 2 / ~ 1 ) / ( A l / A O )  ( 1 2 4  

P n  = ',/A0 (lab) 

The various equations can easily be made dimensionless, and the final forms 
of the equations as well as the definition of the variables are given in Table I 
for a feed stream of pure monomer. 

These equations are solved using the following reference values suggested by 
Kumar et al.5: 

Pl = K[P,I,,o/Tg, = 1.0 

p2 = (aL - ag)Tgm = 2.0 

p3 = T/Tgm = 1.06 

b, = 0.05 

b, = 0.04 

For the above set of dimensionless parameters and for a given value of the 
dimensionless residence time t* [eq. (a) of Table I] is solved for an assumed 
value of t ~ , / k , , ~ .  Only one value of [PI* so obtained is physically meaningful 
(the other being negative). This computed [PI* is used in eqs. (0-(h) of Table 
I to get D/D,. Equation (e) of Table I is then used to compute a new value of 
k,/k, ,o,  and, if this differs from the assumed value by more than some 
tolerance (lop5), it is used as a new estimate, and the computations are 
repeated. Thus, the method of successive substitutions is used to converge to 
the correct value of [PI* for any t*. Once convergence is attained, eqs. (b)-(d) 
of Table I are used to get the corresponding p n  and p. The CPU time on a 
DEC 1090 for a set of computations for one set of parameters [eq. (13)] but for 
a whole range of values t* (with intervals of 100 for 0 < t* < 1000, and 
At* = lo00 for lo00 I t* I 20,000) is 1.35 s. It may be added that eqs. (a) and 
(e)-(h) of Table I can also be analytically combined into a single nonlinear 
algebraic equation which can alternatively be solved to give identical numeri- 
cal solutions. This has indeed been done in our study of the multiplicity of 
steady states, discussed below. 

( b )  Multiplicity. Recently, Choi'' studied the multiplicity of steady states 
for free radical solution polymerizations in an HCSTR, in the presence of heat 
transfer to a coolant, using the mean residence time as the bifurcation 
parameter. He used the singularity theory as suggested by Balakotaiah and 
~ ~ ~ 2 1 - 2 6  and neglected the presence of the gel effect. In this part of our work, 
an attempt has been made to investigate the possibility of multiple steady 
states in HCSTRs, for step growth polymerization of ARB monomers under 
conditions of infinitely rapid heat transfer (from a jacket) rate but in the 
presence of diffusional limitations. The dimensionless parameters used are 
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those given in eq. (13), and the residence time t* is used as the bifurcation 
parameter. The equations of Table I are combined to give the following 
equation for the functional group conversion x: 

where 

The parameter space p* is defined as 

P* = (Pl, P 2 ,  P 3 ,  P 4 ,  bl, b2) (16) 

The surface defined by eq. (14) is called the steady state manifold. According 
to Ref. 26, the surface in the parameter space p* a t  which a continuous 
change of parameters causes the appearance or disappearance of a hysteresis 
type multiplicity is called the hysteresis variety. The following conditions are 
to be satisfiedz6 for the hysteresis variety: 

F(x, t*,p*) = 0 

aF 
- (x ,  t*,p*) = 0 ax 
a 2F 
- (x ,  t*,p*) = 0 
ax2 

The isola variety26 similarly defines a surface in the parameter space p*, 
where a continuous change of parameters causes the appearance or disappear- 
ance of an isolated branch and satisfies eqs. 17(a), 17(b), and 

aF 
at* 
-(x, t*,p*) = 0 

Similarly, the double limit variety is defined21 in the parameter space p*, by 
the four equations 

F ( x , ,  t*,p*) = 0 (19a) 

F ( x 2 ,  t*,p*) = 0 (19b) 

aF 
-(xl, t*,p*) = 0 ax 

- (xz,  t*,p*) = 0; 
aF 
d X  

x1 + x2 

where x, and x2 represent the relative range of limit points (0 c: xl, x 2  < 1). 
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Details of the algebraic manipulations required for obtaining the hysteresis 
variety on a p3-p4 plane are given in the Appendix. For a given set of 
b,, b,, p,, p2, and x (0 < x < l), the sixth degree polynomial in p3, as dis- 
cussed in the Appendix, can be obtained. Real roots (values of p3) of this 
polynomial have been solved for, using the IMSL subroutine ZREAL 1, using 
the technique discussed. The remaining roots are complex and are not com- 
puted. At times two and at  times only a single plausible value of p3 (p3 real 
and positive) are obtained, the remaining solutions being dropped. For each 
plausible value of p3, eqs. (14) and (15) are used to obtain the corresponding p4 
values. The results give the curve for the hysteresis variety on the ,!?-p4 
plane. 

The development of the final equations for the isola variety is far simpler, 
and is given in the Appendix again. In the double limit variety, one obtains 
eqs. (36) and (37) of the Appendix. By equating these two equations, a sixth 
degree polynomial is obtained in p3, involving b,, b,, PI, P,, x,, and x,, with 
0 < xl, x, < 1.0. We define a function G'(xl, x2, b,, b,, p,, p2, p3) = t: - t;, 
where t: and t$ are the right-hand sides of eqs. (36) and (37). For a given set 
of values of xl, x2(x1 z x2) and 0 < x1/x2 < co, b,, b,, pl, and p,, an initial 
guess for p3 is supplied, and the subroutine ZREAL 1 of IMSL is again used 
to find the values of p3 which make G' zero. 

RESULTS AND DISCUSSION 

In order to test out the computer program for simulation, results were 
generated for the case of no diffusional limitations ( l z  / l z p , o  = 1.0) and the 
numerical results compared with the analytical solution 3. . 

2t* 
p ,  = (1 + 4t*)'/2 

(2t* + l)(JW - 1) - - 
2t* 

Excellent agreement was found. The computer program was then used to 
generate results for the case when diffusional limitations were present, using 
the reference values of the parameters [eq. (13)]. 

A parametric study was performed by varying one parameter at  a time, 
keeping the remaining a t  their reference values. Figures 2-4 show the influ- 
ence of the parameter p4( = - kp,or~[Pl]b,o/Do). The trend is quite similar to 
that obtained for batch  reactor^,^ although the values of t* are much higher 
in the case of HCSTRs, as expected (see Fig. 5). Figure 2 shows the variation 
of kp/k , ,o  with t*. The change is most significant for values of p4 varying 
between lo5 and 106 for conversions of around 97% (t* - 2000). Figure 3 
shows the variation of the number average chain length p ,  with t*. It is 
observed that diffusional limitations start playing a role a t  conversions of 
about 93-95% ( p ,  > 15-20) for the reference run. These conversions are low 
enough for HCSTRs to be used commercially, and indeed these reactors are 
used under such conditions for polyesterifications. The variation of the poly- 
dispersity index p is shown in Figure 4. Unlike in batch reactors, the maxi- 
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Fig. 14. k,/k, , ,  vs. t* with PI as parameter. 

mum value of p is not limited to 2.0 in this case, and the value of p increases 
continuously as t* increases. It may be noted that the plot for fl, = 0 in all 
these cases corresponds to the results of Biesenberger.30 Thus, i t  is observed 
that lower p n  and p products are forined at  any specified t* in the presence of 
diffusional limitations than in their absence. However, eqs. (a)-(d) of Table I 
can be easily rearranged to show that there is a unique value of p for a given 
p n, irrespective of diffusional limitations. This is an interesting, though not 
surprising (it may be proved statistically), result, and the plot is the same as 
given by Tadmor and Bie~enberger.~~ 

The effect of the parameters b, and b, are shown in Figures 6-9. The 
results are found to be less sensitive to changes in b,, the maximum sensitivity 
with respect to b, being observed in the range 0.035 < b, < 0.05. 

Figures 10 and 11 show the influence of the parameter ,8, (=  T/T',). As 
expected, lowering the value of Tgm or increasing T reduces the diffusional 
limitations. 

Figures 12-15 shows the effects of the parameters p2 [ = ( a I  - C Y , ) ~ " , ]  and 
p1 [ = K [P,] b,0/5"g,], respectively. The trends are again as expected intu- 
i tivel y . 

In order to study the multiplicity of steady states in the polymerization of 
ARB monomers in HCSTRs (under infinitely rapid heat transfer conditions), 
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Fig. 15. 1.1, vs t* with PI as parameter. 

the hysteresis, isola and double limit varieties are obtained for the reference 
values of the parameters b,, b,, P,, and P,, as given in eq. (13), and referred to 
a P3-P4 plane. Numerical results for 0 < x < 1 show that the hysteresis 
variety plot on a &-P4 plane is as follows: 

p4 << o (large negative) for P3 > 1.4 (2lb) 

Negative values of P4 are physically unrealizable. This suggests that there is 
no physically meaningful hysteresis variety. Similar results were obtained 
when b,, b,, P,, and P2 were changed from their reference values within 
reasonable limits. 

The isola variety is given by eq. (31) of the Appendix. It is found that for all 
practical values of the parameters b,, b,, P,, P,, and P3, eq. (31) is not 
satisfied. This implies that there is no isola variety as well for the present 
example. In our study of the double limit variety, i t  was found that, for the 
entire range of x ,  and x ,  values, P3 values were either zero or negative, which 
is not plausible. This implies that there is no physically plausible double limit 
varietv either for the parameter values of interest. This system thus exhibits 
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unique steady states. In fact, numerical simulations for several sets of values 
of the parameters always led to unique steady states, with no hysteresis, isola, 
or double limit varieties. It is possible that multiple steady states may be 
exhibited when one incorporates energy balance equations into the modeling 
equations as in the case of Choi2' for chain polymerization (in absence of the 
gel effect). Work along these lines will require precise functionalities for b,(T) 
and b,(T), which are not yet known for step growth polymerization systems 
of industrial interest. The equation for the diffusional limitations are indeed 
available for poly(methy1 methacrylate) (PMMA) chain polymerization, and 
study of multiplicity of steady states for these systems in the presence of the 
gel effect is continuing. 

CONCLUSIONS 

The isothermal polymerization of ARB monomers exhibiting segmental 
diffusional limitation in HCSTRs is simulated. The effect of various dimen- 
sionless parameters are obtained. A study of the multiplicity of steady states 
using the singularity theory approach of Balakotaiah and Luss21-26 reveals 
the absence of hysteresis or isolated branches under physically reasonable 
values of the various parameters and points to the existence of unique steady 
states under the conditions studied. 

APPENDIX: DERIVATION OF HYSTERESIS AND 
ISOLA VARIETIES 

Hysteresis Variety 

Equations (14), (15), and (17b) give 

' p  (2x - 1)( c - gx)2 = - [ (2xt - 2 t  - 1)( c - gx) 2 
3 4  

+ [2g( c - g x ) (  ug - bc) + ( a g  - b ~ ) ~ ]  [ t ( x  - 1)' - x ]  ] (23) 

where 
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Eliminating exp(d) between eqs. (14) and (22)  and solving for t*, one gets 

x2c[ (ag  - bc) (x  - 1 )  - ( c  - gx)'] 

( x  - l ) ' [ ( c  - gx)' + x(x  - l ) ( a g  - bc)] 
t* = 

Eliminating exp(d) between eqs. (14) and (23), and solving for t*, 

t* = x ( 2 ( c  - g x ) , [ ( c  - gx)2  - (x  - l ) ( a g  - bc)] 

-x (x  - l ) ( a g  - bc) [2g(c  - g x )  + ag - b c ] }  

x { (x  - 1 ) [ 2 ( c  - gx)"x - 1)  - 2 x ( c  - g x ) 4  

-4x(x - l ) ( a g  - bc) (c  - gx)' - 2gx(c  - g x ) ( a g  - bc) (x  - l), 

- x (ag  - bc),(x - 1 ) 2 ] } p 1  ( 2 9 )  

Equating equations (28) and (29), a sixth degree polynomial in &, involving 
b,, b,, p,, &, and x can be obtained. 

Instead of actually solving the sixth-degree polynomial in p,, we defined a 
function G 

where t: and t; are the expressions on the right-hand sides of eqs. (28) and 
(29). For a given set of values of x ,  b,, b,, p,, and p, an initial guess for j?, is 
supplied and the subroutine ZREAL 1 tries to improve p, so that G becomes 
zero (within a tolerance of for &), even if the initial guess is a poor one. 

Isola Variety 

For the isola variety, eqs. (14), (15), and (18) give 

where d is given by eq. (15). 

Double Limit Variety 

From eq. (19), 

a - bx, 

c - gx, 
(32) ,p,(x," 1 - X I )  + [ t * ( x ,  - 1), - x,]exp( --) = 0 

a - bx, 

c - gx2 
(33) ,b4(x," 1 - x,) + [ t * ( x ,  - - x,]exP( --) = 0 
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i 1 
p 4 ( 2 x ,  - 1) + (2x,t* - 2 t *  - 1) + [ t*xl” - (2 t *  + l)x, + t*] 

2t*  - 

Eliminating exp[(u - b x , ) / ( c  - gx,)] between eqs. (32) and (34) and solving 
for t* ,  we get 

( c  - gx1)2 - ( x ,  - l)(ug - be) x12 

( x ,  - 1y x,(l - x,)(ug - bc) - ( c  - gx$ 
(36) t* = 

Similarly, eliminating exp[(u - bx2)/(c - gx2)] between eqs. (33) and (35) 
and solving for t*,  we get 

( c  - gx2y - ( x 2  - l)(ug - bc) 4 
( x 2  - 1)2 x2(l - x2)(ag - be) - (c  - gx,)2 

(37) t* = 
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